Quasi-interpolants Based Multilevel B-Spline Surface Reconstruction from Scattered Data

نویسندگان

  • Byung-Gook Lee
  • Joon-Jae Lee
  • Ki-Ryoung Kwon
چکیده

This paper presents a new fast and local method of 3D surface reconstruction for scattered data. The algorithm makes use of quasiinterpolants to compute the control points from a coarse to fine hierarchy to generate a sequence of bicubic B-spline functions whose sum approaches to the desired interpolation function. Quasi-interpolants gives a procedure for deriving local spline approximation methods where a Bspline coefficient only depends on data points taken from the neighborhood of the support corresponding B-spline. Experimental results demonstrate that high-fidelity reconstruction is possible from a selected set of irregular samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multidimensional Lobachevsky Spline Integration on Scattered Data

This paper deals with the topic of numerical integration on scattered data in Rd , d ≤ 10, by a class of spline functions, called Lobachevsky splines. Precisely, we propose new integration formulas based on Lobachevsky spline interpolants, which take advantage of being expressible in the multivariate setting as a product of univariate integrals. Theoretically, Lobachevsky spline integration for...

متن کامل

Scattered Data Interpolation with Multilevel B-Splines

This paper describes a fast algorithm for scattered data interpolation and approximation. Multilevel B-splines are introduced to compute a C 2 -continuous surface through a set of irregularly spaced points. The algorithm makes use of a coarse-tofine hierarchy of control lattices to generate a sequence of bicubic B-spline functions whose sum approaches the desired interpolation function. Large p...

متن کامل

Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains

In this paper we generate and study new cubature formulas based on spline quasi-interpolants defined as linear combinations of C bivariate quadratic B-splines on a rectangular domain Ω, endowed with a non-uniform criss-cross triangulation, with discrete linear functionals as coefficients. Such B-splines have their supports contained in Ω and there is no data point outside this domain. Numerical...

متن کامل

Numerical integration using spline quasi-interpolants

In this paper, quadratic rules for obtaining approximate solution of definite integrals as well as single and double integrals using spline quasi-interpolants will be illustrated. The method is applied to a few test examples to illustrate the accuracy and the implementation of the method.

متن کامل

Multivariate normalized Powell-Sabin B-splines and quasi-interpolants

We present the construction of a multivariate normalized B-spline basis for the quadratic C-continuous spline space defined over a triangulation in R (s ≥ 1) with a generalized Powell-Sabin refinement. The basis functions have a local support, they are nonnegative, and they form a partition of unity. The construction can be interpreted geometrically as the determination of a set of s-simplices ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005